Light Photographed As A Wave And A Particle For The First Time

Scientists have long known that light can behave as both a particle and a wave—Einstein first predicted it in 1909. But no experiment has been able to show light in both states simultaneously. Now, researchers at the École Polytechnique Fédérale de Lausanne in Switzerland have taken the first ever photograph of light as both a wave and a particle. The key was a new experimental technique that uses electrons to capture the light’s movement. The work was published today in the journal Nature Communications.

To get this snapshot, the researchers shot laser pulses at a nanowire. The wavelengths of light moved in two different directions along the metal. When the waves ran into each other, they look liked a wave standing still, which is effectively a particle.

In order to see how the waves were moving, the researchers shot a beam of electrons at the nanowire, like dropping dye in a river to see the currents. The particles in the light wave changed the speed at which the electrons moved. That enabled the researchers to capture an image just as the waves met.

“This experiment demonstrates that, for the first time ever, we can film quantum mechanics – and its paradoxical nature – directly,” said Fabrizio Carbone, one of the authors of the study, in a press release. Carbone hopes that a better understanding of how light functions can jumpstart the field of quantum computing.

Link Original: https://www.popsci.com/light-photographed-wave-and-particle-first-time/?utm_campaign=trueAnthem%3A%20Trending%20Content&utm_medium=trueAnthem&utm_source=facebook&fbclid=IwAR1bnEcplHEvfb3UOKE8iYXeYqoC_JI1OWMhVKc2tbL4oQ9uvxfW5mkM1BQ


The ‘X17’ particle: Scientists may have discovered the fifth force of nature

A new paper suggests that the mysterious X17 subatomic particle is indicative of a fifth force of nature.


Physicists have long known of four fundamental forces of nature: gravity, electromagnetism, the strong nuclear force, and the weak nuclear force. 

Now, they might have evidence of a fifth force. 

The discovery of a fifth force of nature could help explain the mystery of dark matter, which is proposed to make up around 85 percent of the universe’s mass. It could also pave the way for a unified fifth force theory, one that joins together electromagnetic, strong and weak nuclear forces as «manifestations of one grander, more fundamental force,» as theoretical physicist Jonathan Feng put it in 2016.

The new findings build upon a study published in 2016 that offered the first hint of a fifth force.

Leer Más





Quantum Leaps, Long Assumed to Be Instantaneous, Take Time

 

 

 

 

 

When quantum mechanics was first developed a century ago as a theory for understanding the atomic-scale world, one of its key concepts was so radical, bold and counter-intuitive that it passed into popular language: the “quantum leap.” Purists might object that the common habit of applying this term to a big change misses the point that jumps between two quantum states are typically tiny, which is precisely why they weren’t noticed sooner. But the real point is that they’re sudden. So sudden, in fact, that many of the pioneers of quantum mechanics assumed they were instantaneous.

Leer Más



Quantum Teleportation Enters the Real World

 

 

 

 

 

 

Two separate teams of scientists have taken quantum teleportation from the lab into the real world. Researchers working in Calgary, Canada and Hefei, China, used existing fiber optics networks to transmit small units of information across cities via quantum entanglement — Einstein’s «spooky action at a distance.»Stepping Outside the LabAccording to quantum mechanics, some objects, like photons or electrons, can be entangled.

Leer Más