Infinity Is a Beautiful Concept – And It’s Ruining Physics

I was seduced by infinity at an early age. Georg Cantor’s diagonality proof that some infinities are bigger than others mesmerized me, and his infinite hierarchy of infinities blew my mind. The assumption that something truly infinite exists in nature underlies every physics course I’ve ever taught at MIT—and, indeed, all of modern physics. But it’s an untested assumption, which begs the question: Is it actually true?

A Crisis in Physics

There are in fact two separate assumptions: “infinitely big” and “infinitely small.” By infinitely big, I mean that space can have infinite volume, that time can continue forever, and that there can be infinitely many physical objects. By infinitely small, I mean the continuum—the idea that even a liter of space contains an infinite number of points, that space can be stretched out indefinitely without anything bad happening, and that there are quantities in nature that can vary continuously.

Leer Más


Physicists solve a 140-year-old mystery

 

  • Researchers discover a method of extracting previously unavailable information from superconductors.
  • The study builds on a 19th-century discovery by physicist Edward Hall.
  • The research promises to lead to a new generation of semiconductor materials and devices.

 

New research, led by IBM, made a breakthrough in resolving a mystery that has baffled physicists for 140 years. It promises to lead to a new generation of semiconductor materials and devices that use them.

Leer Más



Does Consciousness Pervade the Universe?

Philosopher Philip Goff answers questions about “panpsychism”

One of science’s most challenging problems is a question that can be stated easily: Where does consciousness come from? In his new book Galileo’s Error: Foundations for a New Science of Consciousness,philosopher Philip Goff considers a radical perspective: What if consciousness is not something special that the brain does but is instead a quality inherent to all matter? It is a theory known as “panpsychism,” and Goff guides readers through the history of the idea, answers common objections (such as “That’s just crazy!”) and explains why he believes panpsychism represents the best path forward. He answered questions from Mind Matters editor Gareth Cook.

[An edited transcript of the interview follows.]

Leer Más


‘Time is elastic’: Why time passes faster atop a mountain than at sea level

The idea of ‘absolute time’ is an illusion. Physics and subjective experience reveal why.

  • Since Einstein posited his theory of general relativity, we’ve understood that gravity has the power to warp space and time.
  • This “time dilation” effect occurs even at small levels.
  • Outside of physics, we experience distortions in how we perceive time — sometimes to a startling extent.

Place one clock at the top of a mountain. Place another on the beach. Eventually, you’ll see that each clock tells a different time. Why? Time moves slower as you get closer to Earth, because, as Einstein posited in his theory of general relativity, the gravity of a large mass, like Earth, warps the space and time around it.

Scientists first observed this “time dilation” effect on the cosmic scale, such as when a star passes near a black hole. Then, in 2010, researchers observed the same effect on a much smaller scale, using two extremely precise atomic clocks, one placed 33 centimeters higher than the other. Again, time moved slower for the clock closer to Earth.

Leer Más


Astrophysicist Says He Knows How to Build a Time Machine

Astrophysicist Ron Mallett believes he’s found a way to travel back in time — theoretically.

The tenured University of Connecticut physics professor recently told CNN that he’s written a scientific equation that could serve as the foundation for an actual time machine. He’s even built a prototype device to illustrate a key component of his theory — though Mallett’s peers remain unconvinced that his time machine will ever come to fruition.

Leer Más


Scientists Find First Observed Evidence That Our Universe May Be a Hologram

Physicists finds evidence from just after the Big Bang that supports the controversial holographic universe theory.

An international study claims to have found first observed evidence that our universe is a hologram.

What is the holographic universe idea? It’s not exactly that we are living in some kind of Star Trekky computer simulation. Rather the idea, first proposed in the 1990s by Leonard Susskind and Gerard ‘t Hooft, says that all the information in our 3-dimensional reality may actually be included in the 2-dimensional surface of its boundaries. It’s like watching a 3D show on a 2D television.

Leer Más


Electronics at the speed of light

Illustration of how electrons can be imagined to move between two arms of a metallic nanoantenna, driven by a single-cycle light wave. Credit: University of Konstanz

A European team of researchers including physicists from the University of Konstanz has found a way of transporting electrons at times below the femtosecond range by manipulating them with light. This could have major implications for the future of data processing and computing.

Contemporary electronic components, which are traditionally based on silicon semiconductor technology, can be switched on or off within picoseconds (i.e. 10-12 seconds). Standard mobile phones and computers work at maximum frequencies of several gigahertz (1 GHz = 109 Hz) while individual transistors can approach one terahertz (1 THz = 1012Hz). Further increasing the speed at which electronic switching devices can be opened or closed using the standard technology has since proven a challenge. A recent series of experiments—conducted at the University of Konstanz and reported in a recent publication in Nature Physics—demonstrates that electrons can be induced to move at sub-femtosecond speeds, i.e. faster than 10-15 seconds, by manipulating them with tailored .

Leer Más


Quantum Biology May Help Solve Some of Life’s Greatest Mysteries

In one of the University of Sheffield’s physics labs, a few hundred photosynthetic bacteria were nestled between two mirrors positioned less than a micrometer apart. Physicist David Coles and his colleagues were zapping the microbe-filled cavity with white light, which bounced around the cells in a way the team could tune by adjusting the distance between the mirrors. According to results published in 2017, this intricate setup caused photons of light to physically interact with the photosynthetic machinery in a handful of those cells, in a way the team could modify by tweaking the experimental setup.1

That the researchers could control a cell’s interaction with light like this was an achievement in itself. But a more surprising interpretation of the findings came the following year. When Coles and several collaborators reanalyzed the data, they found evidence that the nature of the interaction between the bacteria and the photons of light was much weirder than the original analysis had suggested. “It seemed an inescapable conclusion to us that indirectly what [we were] really witnessing was quantum entanglement,” says University of Oxford physicist Vlatko Vedral, a coauthor on both papers.

Leer Más


Why the number 137 is one of the greatest mysteries in physics

Famous physicists like Richard Feynman think 137 holds the answers to the Universe.

  • The fine structure constant has mystified scientists since the 1800s.
  • The number 1/137 might hold the clues to the Grand Unified Theory.
  • Relativity, electromagnetism and quantum mechanics are unified by the number.

Does the Universe around us have a fundamental structure that can be glimpsed through special numbers?

The brilliant physicist Richard Feynman (1918-1988) famously thought so, saying there is a number that all theoretical physicists of worth should “worry about”. He called it “one of the greatest damn mysteries of physics: a magic number that comes to us with no understanding by man”.

Leer Más