Some Scientists Believe the Universe Is Conscious

In upcoming research, scientists will attempt to show the universe has consciousness. Yes, really. No matter the outcome, we’ll soon learn more about what it means to be conscious—and which objects around us might have a mind of their own.

What will that mean for how we treat objects and the world around us? Buckle in, because things are about to get weird.

What Is Consciousness?

The basic definition of consciousness intentionally leaves a lot of questions unanswered. It’s “the normal mental condition of the waking state of humans, characterized by the experience of perceptions, thoughts, feelings, awareness of the external world, and often in humans (but not necessarily in other animals) self-awareness,” according to the Oxford Dictionary of Psychology.

Scientists simply don’t have one unified theory of what consciousness is. We also don’t know where it comes from, or what it’s made of.

However, one loophole of this knowledge gap is that we can’t exhaustively say other organisms, and even inanimate objects, don’t have consciousness. Humans relate to animals and can imagine, say, dogs and cats have some amount of consciousness because we see their facial expressions and how they appear to make decisions. But just because we don’t “relate to” rocks, the ocean, or the night sky, that isn’t the same as proving those things don’t have consciousness.

This is where a philosophical stance called panpsychism comes into play, writes All About Space’s David Crookes:

“This claims consciousness is inherent in even the tiniest pieces of matter — an idea that suggests the fundamental building blocks of reality have conscious experience. Crucially, it implies consciousness could be found throughout the universe.”

It’s also where physics enters the picture. Some scientists have posited that the thing we think of as consciousness is made of micro-scale quantum physics events and other “spooky actions at a distance,” somehow fluttering inside our brains and generating conscious thoughts.

The Free Will Conundrum

One of the leading minds in physics, 2020 Nobel laureate and black hole pioneer Roger Penrose, has written extensively about quantum mechanics as a suspected vehicle of consciousness. In 1989, he wrote a book called The Emperor’s New Mind, in which he claimed “that human consciousness is non-algorithmic and a product of quantum effects.”

Let’s quickly break down that statement. What does it mean for human consciousness to be “algorithmic”? Well, an algorithm is simply a series of predictable steps to reach an outcome, and in the study of philosophy, this idea plays a big part in questions about free will versus determinism.

Are our brains simply cranking out math-like processes that can be telescoped in advance? Or is something wild happening that allows us true free will, meaning the ability to make meaningfully different decisions that affect our lives?

Within philosophy itself, the study of free will dates back at least centuries. But the overlap with physics is much newer. And what Penrose claimed in The Emperor’s New Mind is that consciousness isn’t strictly causal because, on the tiniest level, it’s a product of unpredictable quantum phenomena that don’t conform to classical physics.

So, where does all that background information leave us? If you’re scratching your head or having some uncomfortable thoughts, you’re not alone. But these questions are essential to people who study philosophy and science, because the answers could change how we understand the entire universe around us. Whether or not humans do or don’t have free will has huge moral implications, for example. How do you punish criminals who could never have done differently?

Consciousness Is Everywhere

In physics, scientists could learn key things from a study of consciousness as a quantum effect. This is where we rejoin today’s researchers: Johannes Kleiner, mathematician and theoretical physicist at the Munich Center For Mathematical Philosophy, and Sean Tull, mathematician at the University of Oxford.

Kleiner and Tull are following Penrose’s example, in both his 1989 book and a 2014 paper where he detailed his belief that our brains’ microprocesses can be used to model things about the whole universe. The resulting theory is called integrated information theory (IIT), and it’s an abstract, “highly mathematical” form of the philosophy we’ve been reviewing.

In IIT, consciousness is everywhere, but it accumulates in places where it’s needed to help glue together different related systems. This means the human body is jam-packed with a ton of systems that must interrelate, so there’s a lot of consciousness (or phi, as the quantity is known in IIT) that can be calculated. Think about all the parts of the brain that work together to, for example, form a picture and sense memory of an apple in your mind’s eye.

The revolutionary thing in IIT isn’t related to the human brain—it’s that consciousness isn’t biological at all, but rather is simply this value, phi, that can be calculated if you know a lot about the complexity of what you’re studying.

If your brain has almost countless interrelated systems, then the entire universe must have virtually infinite ones. And if that’s where consciousness accumulates, then the universe must have a lot of phi.

Hey, we told you this was going to get weird.

“The theory consists of a very complicated algorithm that, when applied to a detailed mathematical description of a physical system, provides information about whether the system is conscious or not, and what it is conscious of,” Kleiner told All About Space. “If there is an isolated pair of particles floating around somewhere in space, they will have some rudimentary form of consciousness if they interact in the correct way.”

Kleiner and Tull are working on turning IIT into this complex mathematical algorithm—setting down the standard that can then be used to examine how conscious things operate. 

Think about the classic philosophical comment, “I think, therefore I am,” then imagine two geniuses turning that into a workable formula where you substitute in a hundred different number values and end up with your specific “I am” answer.

The next step is to actually crunch the numbers, and then to grapple with the moral implications of a hypothetically conscious universe. It’s an exciting time to be a philosopher—or a philosopher’s calculator.

Link Original:

Qué es la epigenética y cuál es su importancia para el futuro

MADRID, 27 Dic. (EDIZIONES) –    Del mismo modo que no podemos alterar el significado de las palabras de un diccionario, los genes heredados de nuestros padres y los que aportaremos como herencia a nuestros hijos contienen instrucciones precisas que nuestro cuerpo no puede dejar de obedecer.  

Si los genes fuesen palabras, el epigenoma sería la gramática que da sentido a las palabras y que permite ordenarlas en frases con sentido. «La gramática, sin embargo, es mucho más versátil y maleable. Dentro de unos límites podemos manipularla para redactar desde simples manuales de cocina a poesías excelsas llenas de emoción y sentimientos usando el mismo vocabulario. Lo mismo hace la epigenética, que tiene la función de regular el funcionamiento de todos nuestros genes para configurar el curso de nuestras vidas».

Así lo afirma en una entrevista con Infosalus el doctor en Biología e investigador y profesor de Genética en la Universidad de Barcelona David Bueno i Torrens, con motivo de la publicación de su libro ‘Epigenoma para cuidar tu cuerpo y tu vida’ (Plataforma Editorial).

En concreto, el término epigenética fue acuñado en 1953 para referirse al estudio de las interacciones entre genes y factores ambientales que se producen en los organismos. Las modificaciones epigenéticas se van construyendo con el paso del tiempo y, a veces, también se van eliminando. No son permanentes como los genes, sino temporales, aunque muy a menudo duran toda la vida.

Buena parte sí dependen de nosotros y de nuestro estilo de vida. Según cómo sea éste, y en función de los imprevisibles azares que nos depare la vida, se fijarán unas modificaciones epigenéticas u otras. E incluso en algunos casos dependen de nuestros propios pensamientos.

«Se trata de unas señales de tráfico que están puestas en nuestro genoma. Contiene todas las instrucciones para que funcionemos y nuestro cuerpo se forme desde la fecundación hasta ser viejos. Como cualquier manual de instrucciones hay que leerlo bien y la epigenética sería como las normas sintánticas que permiten leer bien toda la información, dicen cuándo usar cada palabra, en qué cantidad, o cuándo dejar de usarla, por ejemplo.  Es como tener una carretera, que sería nuestro genoma, y pones una señal que limita la velocidad, otra que hay que ir a 50 etc. La carretera es la mismo, pero funcionará de otra manera porque has limitado la velocidad, o has hecho un stop, o un sentido obligatorio, son señales que permiten que el genoma funcione de manera correcta», explica el también divulgador científico.

En concreto, dice que son moléculas específicas que se pegan al ADN o a las proteínas que lo acompañan y se ponen en función de las condiciones ambientales, además de ayudar a regular el genoma.

 Por ejemplo, dice que una persona con una dieta rica en azúcares necesita producir más enzimas para degradarlos, los genes que gestionan los azúcares están más activos porque tienen señales que les hacen estar más activos. «Es la forma de adaptar el funcionamiento del genoma a la vida que cada persona lleva», sostiene Bueno i Torrens.

A su juicio, el epigenoma es importante porque se ha visto que muchos de estos factores ambientales, las modificaciones que introducimos, pueden favorecer algunos aspectos del genoma o bien perjudicar otros. «Se ha visto que sustancias tóxicas como el humo del tabaco provoca modificaciones epigenéticas en varias docenas de genes para que los pulmones se acostumbren a respirar ese aire contaminado.

El efecto secundario es que aumentan las posibilidades de tener cáncer de pulmón. Cuando un fumador deja de fumar puede pensar que ha quedado libre de este riesgo pero se ha visto que estas modificaciones epigenéticas pueden permanecer en los genes de sus pulmones durante unos 20 años y es donde está la importancia médica», explica el biólogo.

 Según señala, otro ejemplo sería por ejemplo un consumo excesivo de grasas, ya que éste hace que se activen unos genes a través de modificaciones epigenéticas para que puedas digerirlas mejor y como consecuencia aumenta la posibilidad de que se pueda padecer diabetes en el futuro.

«Por ello, se permite ver que estas modificaciones epigenéticas están en el origen de muchas enfermedades y permite explicar por qué hay personas que tienen determinadas enfermedades. La epigenética está en fase de investigación y el campo sanitario en el que está más avanzada es en el del cáncer. Se ha visto que muchos procesos cancersos tienen origen epigenético y hay pruebas que, según qué modificaciones epigenéticas tenga el paciente, indican qué tratamiento le funcionará mejor para el cáncer, es algo que se está empezando a usar», celebra el experto.


Así con todo, a juicio de este experto en Genética, la epigenética pasa primero por identificar qué modificaciones pueden ocasionar enfermedades. «Se puede emplear como método diagnóstico y como pronóstico», indica.

Después para ver cuál es el origen de estas modificaciones y qué factores ambientales las hacen más habituales. El humo del tabaco es obvio que provoca enfermedades así como el alcohol, pero también hay otras costumbres que no se saben que producen modificaciones epigenéticas que pueden resultar nocivas», añade el especialista.

En tercer lugar cree que desarrollar fármacos epigenéticos que permitan reconducir estas modificaciones cuando estén mal hechas. «Se tienen unas modificaciones epigenéticas que te hacen ser propenso a tener trastornos mentales, cáncer, diabetes por ejemplo, y si se identifica cuáles son a través de un fármaco se podrá cambiar el epigenoma, como mínimo para disminuir la severidad del trastorno», agrega David Bueno i Torrens.

Link Original:

The human brain builds structures in 11 dimensions, discover scientists






The brain continues to surprise us with its magnificent complexity. Groundbreaking research that combines neuroscience with math tells us that our brain creates neural structures with up to 11 dimensions when it processes information. By «dimensions,» they mean abstract mathematical spaces, not other physical realms. Still, the researchers «found a world that we had never imagined,» said Henry Markram, director of the Blue Brain Project, which made the discovery.

Leer Más

New UC Davis research suggests parents should limit screen media for preschoolers








Devices also limit interaction time

Researchers voiced other reasons for cautious use of mobile devices by young children. «The portable nature of mobile devices allows them to be used in any location, such as while waiting for appointments, or in line at a grocery store. The screen use, then, could interfere with sensitive and responsive interactions with parents or practicing self-soothing behaviors that support optimal development,» said Lawrence.

The research team recruited participants by handing out flyers at preschools and community events. Data were collected between July 1, 2016, and Jan. 11, 2019. During individual 90-minute visits to an on-campus research laboratory, children were asked to complete 10 tasks to evaluate their ability to self-regulate. Tasks were as varied as walking a line slowly, taking turns with the researcher in building a tower out of blocks, and delaying gratification — for example, being asked to hold off unwrapping a gift while the researcher briefly left the room. Parents were asked about screen use using a novel survey designed by Lawrence, and researchers calculated the children’s reported age at first use of screen media and average time spent per week on each device.

Other findings include:

  • There was substantial variation in the amount of time children spent with screen media devices in the average week in this community sample. Screen time for traditional devices (television, computers) ranged from 0 to 68 hours per week, and 0 to 14 hours per week for mobile devices (tablets, smartphones).
  • Children’s screen time in the average week was not related to their family’s income in this sample, but children growing up in higher-income households started using mobile devices at a younger age than lower-income households.
  • Screen time also did not differ by racial/ethnic minority status in this sample.

Additionally, children’s exposure to what the researchers consider traditional screen devices (televisions, computers) in the average week was not related to their self-regulation, in contrast to most previous research. Lawrence speculates that messaging about providing child-directed, educational content and cautioning parents to monitor children’s viewing has reached parents and has been effective, at least among some groups.

This is a small study, but the beginning of a long-term longitudinal study of children’s development of self-regulation and looking at all screen media devices over multiple years with more children and parents, researchers said.

Link Original: