Liquid’ light shows social behaviour

Could photons, light particles, really condense? And how will this “liquid light” behave? Condensed light is an example of a Bose-Einstein condensate: The theory has been there for 100 years, but University of Twente researchers have now demonstrated the effect even at room temperature. For this, they created a micro-size mirror with channels in which photons actually flow like a liquid. In these channels, the photons try to stay together as group by choosing the path that leads to the lowest losses, and thus, in a way, demonstrate “social behavior.” The results are published in Nature Communications.

A Bose-Einstein condensate (BEC) is typically a sort of wave in which the separate particles can not be seen anymore: There is a wave of matter, a superfluid that typically is formed at temperatures close to absolute zero. Helium, for example, becomes a superfluid at those temperatures, with remarkable properties. The phenomenon was predicted by Albert Einstein almost 100 years ago, based on the work of Satyendra Nath Bose; this state of matter was named for the researchers. One type of elementary particle that can form a Bose-Einstein condensate is the photon, the light particle. UT researcher Jan Klärs and his team developed a mirror structure with channels. Light traveling through the channels behaves like a superfluid and also moves in a preferred direction. Extremely low temperatures are not required in this case, and it works at room temperature.


The structure is the well-known Mach-Zehnder interferometer, in which a channel splits into two channels, and then rejoins again. In such interferometers, the wave nature of photons manifests, in which a photon can be in both channels at the same time. At the reunification point, there are now two options: The light can either take a channel with a closed end, or a channel with an open end. Jan Klärs and his team found that the liquid decides for itself which path to take by adjusting its frequency of oscillation. In this case, the photons try to stay together by choosing the path that leads to the lowest losses—the channel with the closed end. You could call it “social behavior,” according to researcher Klärs. Other types of bosons, like fermions, prefer staying separate.

The mirror structure somewhat resembles that of a laser, in which light is reflected back and forth between two mirrors. The major difference is in the extremely high reflection of the mirrors: 99.9985 percent. This value is so high that photons don’t get the chance to escape; they will be absorbed again. It is in this stadium that the photon gas starts taking the same temperature as room temperature via thermalization. Technically speaking, it then resembles the radiation of a black body: Radiation is in equilibrium with matter. This thermalization is the crucial difference between a normal laser and a Bose-Einstein condensate of photons.
In superconductive devices at which the electrical resistance becomes zero, Bose-Einstein condensates play a major role. The photonic microstructures now presented could be used as basic units in a system that solves mathematical problems like the Traveling Salesman problem. But primarily, the paper shows insight into yet another remarkable property of light.

Link Original: https://www.scientiststudy.com/2021/10/liquid-light-shows-social-behaviour.html?fbclid=IwAR3x_CZFiidVuOYU4vCFOltF7S54q8WLrTudDchyEf5Q-ZgyHEiOX3js7k8


Quantum Biology May Help Solve Some of Life’s Greatest Mysteries

In one of the University of Sheffield’s physics labs, a few hundred photosynthetic bacteria were nestled between two mirrors positioned less than a micrometer apart. Physicist David Coles and his colleagues were zapping the microbe-filled cavity with white light, which bounced around the cells in a way the team could tune by adjusting the distance between the mirrors. According to results published in 2017, this intricate setup caused photons of light to physically interact with the photosynthetic machinery in a handful of those cells, in a way the team could modify by tweaking the experimental setup.1

That the researchers could control a cell’s interaction with light like this was an achievement in itself. But a more surprising interpretation of the findings came the following year. When Coles and several collaborators reanalyzed the data, they found evidence that the nature of the interaction between the bacteria and the photons of light was much weirder than the original analysis had suggested. “It seemed an inescapable conclusion to us that indirectly what [we were] really witnessing was quantum entanglement,” says University of Oxford physicist Vlatko Vedral, a coauthor on both papers.

Leer Más

The ‘X17’ particle: Scientists may have discovered the fifth force of nature

A new paper suggests that the mysterious X17 subatomic particle is indicative of a fifth force of nature.


Physicists have long known of four fundamental forces of nature: gravity, electromagnetism, the strong nuclear force, and the weak nuclear force. 

Now, they might have evidence of a fifth force. 

The discovery of a fifth force of nature could help explain the mystery of dark matter, which is proposed to make up around 85 percent of the universe’s mass. It could also pave the way for a unified fifth force theory, one that joins together electromagnetic, strong and weak nuclear forces as “manifestations of one grander, more fundamental force,” as theoretical physicist Jonathan Feng put it in 2016.

The new findings build upon a study published in 2016 that offered the first hint of a fifth force.

Leer Más

Researchers realize efficient generation of high-dimensional quantum teleportation

In a study published in Physical Review Letters, a team led by academician Guo Guangcan from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) has made progress in high dimensional quantum teleportation. The researchers demonstrated the teleportation of high-dimensional states in a three-dimensional six-photon system.

To transmit unknown quantum states from one location to another, quantum teleportation is one of the key technologies to realize long-distance transmission.

Compared with two-dimensional systems, high-dimensional system quantum networks have the advantages of higher channel capacity and better security. In recent years more and more researchers of the quantum information field have been working on generating efficient generation of high-dimensional quantum teleportation to achieve efficient high-dimensional quantum networks.

Leer Más

Scientists Demonstrate “Liquid Light” at Room Temperature for the First Time

Researchers from Italy and Canada have made liquid light at room temperatures for the first time. The work paves the way for studying quantum hydrodynamics further and for future applications of this new type of matter in electronics devices.

A STRANGE FORM OF MATTER

Thanks to technological advances, scientists now have various ways of manipulating matter. Often times, these result in discovering new types of matter that posses unique properties — like the famous metallic hydrogen and the bizarre time crystal. The discovery of such materials leads to a wide range of potential applications in electronics. One of these is the so-called “liquid light,” a strange matter which researchers from the CNR NANOTECH Institute of Nanotechnology in Italy and the Polytechnique Montréal in Canada recently formed at room temperature for the first time.

Leer Más