Quantum entanglement realized between distant large objects

Light propagates through the atomic cloud shown in the center and then falls onto the SiN membrane shown on the left. As a result of interaction with light the precession of atomic spins and vibration of the membrane become quantum correlated. This is the essence of entanglement between the atoms and the membrane. Credit: Niels Bohr Institute

A team of researchers from the University of Copenhagen’s Niels Bohr Institute has successfully entangled two very distinct quantum particles. The findings, which were reported in Nature Physics, have various possible applications in ultra-precise sensing and quantum communication.

Quantum communication and quantum sensing are both based on entanglement. It’s a quantum link between two items that allows them to act as if they’re one quantum object.

Researchers were able to create entanglement between a mechanical oscillator—a vibrating dielectric membrane—and a cloud of atoms, each serving as a small magnet, or «spin,» according to physicists. By joining these disparate entities with photons, or light particles, they were able to entangle. The membrane—or mechanical quantum systems in general—can be used to process quantum information, and the membrane—or mechanical quantum systems in general—can be used to store quantum information.

Professor Eugene Polzik, the project’s leader, says: «We’re on our way to pushing the boundaries of entanglement’s capabilities with this new technique. The larger the objects, the further away they are, and the more different they are, the more intriguing entanglement becomes from both a basic and an applied standpoint. Entanglement between highly diverse things is now conceivable thanks to the new result.»

Imagine the position of the vibrating membrane and the tilt of the total spin of all atoms, similar to a spinning top, to explain entanglement using the example of spins entangled with a mechanical membrane. A correlation occurs when both items move randomly yet are observed travelling right or left at the same moment. The so-called zero-point motion—the residual, uncorrelated motion of all matter that occurs even at absolute zero temperature—is generally the limit of such correlated motion. This limits our understanding of any of the systems.

Eugene Polzik’s team entangled the systems in their experiment, which means they moved in a correlated way with more precision than zero-point motion. «Quantum mechanics is a double-edged sword—it gives us amazing new technology, but it also restricts the precision of measurements that would appear simple from a classical standpoint,» explains Micha Parniak, a team member. Even if they are separated by a large distance, entangled systems can maintain perfect correlation, a fact that has perplexed academics since quantum physics’ inception more than a century ago.

Christoffer stfeldt, a Ph.D. student, elaborates: «Consider the many methods for manifesting quantum states as a zoo of diverse realities or circumstances, each with its own set of features and potentials. If, for example, we want to construct a gadget that can take advantage of the many attributes they all have and perform different functions and accomplish different tasks, we’ll need to invent a language that they can all understand. For us to fully utilise the device’s capabilities, the quantum states must be able to communicate. This entanglement of two zoo elements has demonstrated what we are presently capable of.»

Quantum sensing is an example of distinct perspectives on entangling different quantum things. Different objects have different levels of sensitivity to external pressures. Mechanical oscillators, for example, are employed in accelerometers and force sensors, while atomic spins are used in magnetometers. Entanglement permits only one of the two entangled objects to be measured with a sensitivity not restricted by the object’s zero-point fluctuations when only one of the two is subject to external perturbation.

The approach has the potential to be used in sensing for both small and large oscillators in the near future. The first detection of gravity waves, performed by the Laser Interferometer Gravitational-wave Observatory, was one of the most significant scientific breakthroughs in recent years (LIGO). LIGO detects and monitors extremely faint waves produced by deep-space astronomical events such as black hole mergers and neutron star mergers. The waves can be seen because they shake the interferometer’s mirrors. However, quantum physics limits LIGO’s sensitivity since the laser interferometer’s mirrors are likewise disturbed by zero-point fluctuations. These variations produce noise, which makes it impossible to see the tiny movements of the mirrors induced by gravitational waves.

It is theoretically possible to entangle the LIGO mirrors with an atomic cloud and so cancel the reflectors’ zero-point noise in the same manner that the membrane noise is cancelled in the current experiment. Due to their entanglement, the mirrors and atomic spins have a perfect correlation that can be used in such sensors to almost eliminate uncertainty. It’s as simple as taking data from one system and applying what you’ve learned to the other. In this method, one may simultaneously learn about the position and momentum of LIGO’s mirrors, entering a so-called quantum-mechanics-free subspace and moving closer to unlimited precision in motion measurements. A model experiment demonstrating this principle is on the way at Eugene Polzik’s laboratory.

Link original: https://www.sciandnature.com/2022/01/quantum-entanglement-realized-between.html?fbclid=IwAR2RyzFbzEcknG2KeoBoJo7TY4wzVHpjKqFRjbI57OxqMVexRiObG-wwh8c


Liquid’ light shows social behaviour

Could photons, light particles, really condense? And how will this «liquid light» behave? Condensed light is an example of a Bose-Einstein condensate: The theory has been there for 100 years, but University of Twente researchers have now demonstrated the effect even at room temperature. For this, they created a micro-size mirror with channels in which photons actually flow like a liquid. In these channels, the photons try to stay together as group by choosing the path that leads to the lowest losses, and thus, in a way, demonstrate «social behavior.» The results are published in Nature Communications.

A Bose-Einstein condensate (BEC) is typically a sort of wave in which the separate particles can not be seen anymore: There is a wave of matter, a superfluid that typically is formed at temperatures close to absolute zero. Helium, for example, becomes a superfluid at those temperatures, with remarkable properties. The phenomenon was predicted by Albert Einstein almost 100 years ago, based on the work of Satyendra Nath Bose; this state of matter was named for the researchers. One type of elementary particle that can form a Bose-Einstein condensate is the photon, the light particle. UT researcher Jan Klärs and his team developed a mirror structure with channels. Light traveling through the channels behaves like a superfluid and also moves in a preferred direction. Extremely low temperatures are not required in this case, and it works at room temperature.


The structure is the well-known Mach-Zehnder interferometer, in which a channel splits into two channels, and then rejoins again. In such interferometers, the wave nature of photons manifests, in which a photon can be in both channels at the same time. At the reunification point, there are now two options: The light can either take a channel with a closed end, or a channel with an open end. Jan Klärs and his team found that the liquid decides for itself which path to take by adjusting its frequency of oscillation. In this case, the photons try to stay together by choosing the path that leads to the lowest losses—the channel with the closed end. You could call it «social behavior,» according to researcher Klärs. Other types of bosons, like fermions, prefer staying separate.

The mirror structure somewhat resembles that of a laser, in which light is reflected back and forth between two mirrors. The major difference is in the extremely high reflection of the mirrors: 99.9985 percent. This value is so high that photons don’t get the chance to escape; they will be absorbed again. It is in this stadium that the photon gas starts taking the same temperature as room temperature via thermalization. Technically speaking, it then resembles the radiation of a black body: Radiation is in equilibrium with matter. This thermalization is the crucial difference between a normal laser and a Bose-Einstein condensate of photons.
In superconductive devices at which the electrical resistance becomes zero, Bose-Einstein condensates play a major role. The photonic microstructures now presented could be used as basic units in a system that solves mathematical problems like the Traveling Salesman problem. But primarily, the paper shows insight into yet another remarkable property of light.

Link Original: https://www.scientiststudy.com/2021/10/liquid-light-shows-social-behaviour.html?fbclid=IwAR3x_CZFiidVuOYU4vCFOltF7S54q8WLrTudDchyEf5Q-ZgyHEiOX3js7k8


Quantum Biology May Help Solve Some of Life’s Greatest Mysteries

In one of the University of Sheffield’s physics labs, a few hundred photosynthetic bacteria were nestled between two mirrors positioned less than a micrometer apart. Physicist David Coles and his colleagues were zapping the microbe-filled cavity with white light, which bounced around the cells in a way the team could tune by adjusting the distance between the mirrors. According to results published in 2017, this intricate setup caused photons of light to physically interact with the photosynthetic machinery in a handful of those cells, in a way the team could modify by tweaking the experimental setup.1

That the researchers could control a cell’s interaction with light like this was an achievement in itself. But a more surprising interpretation of the findings came the following year. When Coles and several collaborators reanalyzed the data, they found evidence that the nature of the interaction between the bacteria and the photons of light was much weirder than the original analysis had suggested. “It seemed an inescapable conclusion to us that indirectly what [we were] really witnessing was quantum entanglement,” says University of Oxford physicist Vlatko Vedral, a coauthor on both papers.

Leer Más

The ‘X17’ particle: Scientists may have discovered the fifth force of nature

A new paper suggests that the mysterious X17 subatomic particle is indicative of a fifth force of nature.


Physicists have long known of four fundamental forces of nature: gravity, electromagnetism, the strong nuclear force, and the weak nuclear force. 

Now, they might have evidence of a fifth force. 

The discovery of a fifth force of nature could help explain the mystery of dark matter, which is proposed to make up around 85 percent of the universe’s mass. It could also pave the way for a unified fifth force theory, one that joins together electromagnetic, strong and weak nuclear forces as «manifestations of one grander, more fundamental force,» as theoretical physicist Jonathan Feng put it in 2016.

The new findings build upon a study published in 2016 that offered the first hint of a fifth force.

Leer Más

Researchers realize efficient generation of high-dimensional quantum teleportation

In a study published in Physical Review Letters, a team led by academician Guo Guangcan from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) has made progress in high dimensional quantum teleportation. The researchers demonstrated the teleportation of high-dimensional states in a three-dimensional six-photon system.

To transmit unknown quantum states from one location to another, quantum teleportation is one of the key technologies to realize long-distance transmission.

Compared with two-dimensional systems, high-dimensional system quantum networks have the advantages of higher channel capacity and better security. In recent years more and more researchers of the quantum information field have been working on generating efficient generation of high-dimensional quantum teleportation to achieve efficient high-dimensional quantum networks.

Leer Más

Scientists Demonstrate “Liquid Light” at Room Temperature for the First Time

Researchers from Italy and Canada have made liquid light at room temperatures for the first time. The work paves the way for studying quantum hydrodynamics further and for future applications of this new type of matter in electronics devices.

A STRANGE FORM OF MATTER

Thanks to technological advances, scientists now have various ways of manipulating matter. Often times, these result in discovering new types of matter that posses unique properties — like the famous metallic hydrogen and the bizarre time crystal. The discovery of such materials leads to a wide range of potential applications in electronics. One of these is the so-called “liquid light,” a strange matter which researchers from the CNR NANOTECH Institute of Nanotechnology in Italy and the Polytechnique Montréal in Canada recently formed at room temperature for the first time.

Leer Más