New Quantum Teleportation Record Broken – A Step Forward For Quantum Internet

Theory and experiments have shown that future quantum computers will harness the peculiar properties of quantum mechanics to go above and beyond what is currently possible with even the most powerful supercomputers.

These quantum computers will communicate through the quantum internet, which is not as easy as plugging them into the phone line. One crucial requirement in quantum computing is that the particles that perform the calculations are entangled, a quantum mechanical phenomenon where they become part of a single state. A change to one of the particles creates instantaneous changes to the others no matter how far apart they are.

These entangled states are easily disrupted, unfortunately. So how can they be sent between computers to communicate? That’s where quantum teleportation comes in. The entangled state is transferred between two particles. This technique is not perfectly efficient, and scientists are working hard in trying to make the whole process more successful.

A team of researchers from multiple organizations has reported a record-breaking achievement in PRX Quantum. They were able to deliver sustained, long-distance teleportation of qubits (quantum bits) with a fidelity greater than 90% over a fiber-optic network distance of 44 kilometers (27 miles).

“We’re thrilled by these results,” co-author Panagiotis Spentzouris, head of the Fermilab quantum science program, said in a statement. “This is a key achievement on the way to building a technology that will redefine how we conduct global communication.”

Quantum teleportation doesn’t work like the science fiction popularization of teleportation. What you are teleporting is the state of particles via a quantum channel and a classical channel. The sender has the original qubit. This is made to interact with one particle in an entangled pair, producing “classical signal” information about the state of the original qubit. This signal and the other half of that entangled pair are sent to the receiver, and by putting it together, the receiver can recreate the original qubit.

This success is the result of a collaboration between Fermilab, AT&T, Caltech, Harvard University, NASA Jet Propulsion Laboratory, and the University of Calgary. The systems on which this quantum teleportation was achieved were created by Caltech’s public-private research program on Intelligent Quantum Networks and Technologies, or IN-Q-NET.

“We are very proud to have achieved this milestone on sustainable, high-performing and scalable quantum teleportation systems,” explained Maria Spiropulu, the Shang-Yi Ch’en professor of physics at Caltech and director of the IN-Q-NET research program. “The results will be further improved with system upgrades we are expecting to complete by the second quarter of 2021.”

Quantum computers are not here yet, but having the infrastructure to make them work is crucial. The U.S. Department of Energy published its roadmap for a national quantum internet, last July.

Link Original: https://www.thespaceacademy.org/2021/10/new-quantum-teleportation-record-broken.html?fbclid=IwAR2TOLrZiKrUqd8O940ymKJRtvhinX_GzthoRrfKjhihZagtmaaSmpKLq8M


New invention promises quantum internet that can’t be hacked

Photo by panumas nikhomkhai on Pexels.com
  • Scientists devise the largest-ever quantum communications network.
  • The technology is much cheaper than previous attempts and promises to be hacker-proof.
  • The ‘multiplexing’ system devised by the researchers splits light particles that carry information.

Scientists are closer to creating a hacker-proof quantum internet thanks to a promising new invention. A team led by the University of Bristol in the U.K. found a method of securing online communication that relies on the laws of physics.

The approach aims to make any message sent over the internet interception-proof. 

Leer Más

Aqua-Fi: Underwater WiFi developed using LEDs and lasers

Aquatic internet that sends data through light beams could enable divers to instantly transmit footage from under the sea to the surface.

The internet is an indispensable communication tool, connecting tens of billions of devices worldwide, and yet we struggle to connect to the web from under water. «People from both academia and industry want to monitor and explore underwater environments in detail,» explains the first author, Basem Shihada. Wireless internet under the sea would enable divers to talk without hand signals and send live data to the surface.

Underwater communication is possible with radio, acoustic and visible light signals. However, radio can only carry data over short distances, while acoustic signals support long distances, but with a very limited data rate. Visible light can travel far and carry lots of data, but the narrow light beams require a clear line of sight between the transmitters and receivers.

Leer Más


 

  • The social media platform features a Facebook-style newsfeed, but content is prioritized by recency instead of engagement.
  • Wikipedia co-founder Jimmy Wales said he was inspired to create WT.Social because advertising had allowed «low-quality» content to dominate Facebook and Twitter.
  • Facebook and Twitter have recently adopted opposing strategies in how to handle political advertising.

Leer Más




The Trillion Internet Observations Showing How Global Sleep Patterns Are Changing

The way we use the Internet is beginning to reveal human behavior patterns on a previously unimaginable scale.

January 31, 2017 by Emerging Technology from the arXiv

In 1995, some 40 million people all over the world were connected to the Internet. By 2000 that had grown to around 400 million, and by 2016 it reached 3.5 billion. That means almost half the global population is connected to a single technology.

That’s an extraordinary statistic and one that raises an interesting possibility. With so many people connected in this way, it should become possible to use this technology as a kind of demographic sensor that measures human behavior on an almost unimaginable scale.

Today, Klaus Ackermann at the University of Chicago and a couple of pals say they have done just this by studying how devices connected to, and disconnected from, the Internet between 2006 and 2013. They have done this on a global scale at a time resolution of every 15 minutes to produce a truly mind-boggling number of observations—one trillion of them.

 

Leer Más



Internet game addiction associated with reductions in stress regulation and increases in anxiety levels

playing-computer-games-by-artubr

Excessive Internet gaming over time can lead to decreased epinephrine and norepinephrine levels, according to a recent study published this March in Cyberpsychology, Behavior, and Social Networking. The findings provide evidence of reductions in the autonomic regulation of stress and increases in anxiety levels among adolescents with Internet game addiction.

Leer Más