The Biology Behind ‘Psychosomatic’ Illness

Introduction

Editor’s Note:
University of Pittsburgh neuroscientist Peter L. Strick, PhD, and colleagues recently published a study[1] in Proceedings of the National Academy of Sciences tracing the neural circuitry connecting various motor and affective regions of the brain to the adrenal medulla and possibly other organs. Dr Strick feels the findings could help explain how so-called “psychosomatic” conditions arise and suggest treatment targets for a variety of disorders. Medscape recently spoke with Dr Strick about his research.

Leer Más



How Life (and Death) Spring From Disorder

Life was long thought to obey its own set of rules. But as simple systems show signs of lifelike behavior, scientists are arguing about whether this apparent complexity is all a consequence of thermodynamics.

glitch_birds_1k

What’s the difference between physics and biology? Take a golf ball and a cannonball and drop them off the Tower of Pisa. The laws of physics allow you to predict their trajectories pretty much as accurately as you could wish for.

Now do the same experiment again, but replace the cannonball with a pigeon.

Biological systems don’t defy physical laws, of course — but neither do they seem to be predicted by them. In contrast, they are goal-directed: survive and reproduce. We can say that they have a purpose — or what philosophers have traditionally called a teleology — that guides their behavior.

By the same token, physics now lets us predict, starting from the state of the universe a billionth of a second after the Big Bang, what it looks like today. But no one imagines that the appearance of the first primitive cells on Earth led predictably to the human race. Laws do not, it seems, dictate the course of evolution.

The teleology and historical contingency of biology, said the evolutionary biologist Ernst Mayr, make it unique among the sciences. Both of these features stem from perhaps biology’s only general guiding principle: evolution. It depends on chance and randomness, but natural selection gives it the appearance of intention and purpose. Animals are drawn to water not by some magnetic attraction, but because of their instinct, their intention, to survive. Legs serve the purpose of, among other things, taking us to the water.

Mayr claimed that these features make biology exceptional — a law unto itself. But recent developments in nonequilibrium physics, complex systems science and information theory are challenging that view. Leer Más


In Pursuit of Quantum Biology With Birgitta Whaley

birgitta_whaley

As an undergraduate at Oxford University in the mid-1970s, K. Birgitta Whaley struggled to choose between chemistry and physics. Now, as a professor at the University of California, Berkeley, and director of its Quantum Information and Computation Center, she doesn’t have to: Her research interests span all realms quantum, including both chemistry and physics, as well as computer science and her newest pursuit, quantum biology, where physics meets the life sciences. Leer Más