’Zuckerbergism’: Why the young founder myth is a trap for entrepreneurs

A recent study challenges the conventional thinking that says only young people can dream up successful new businesses.

Copy a link to the article entitled Share ​’Zuckerbergism’: Why the young founder myth is a trap for entrepreneurs on Facebook Share ​’Zuckerbergism’: Why the young founder myth is a trap for entrepreneurs on Twitter Share ​’Zuckerbergism’: Why the young founder myth is a trap for entrepreneurs on LinkedIn 

There’s no shortage of stories about young, hyper-successful entrepreneurs. From the Forbes’ 30 Under 30 lists to films like “The Social Network”, these stories offer an alluring blueprint for early success: dream huge, work hard, and soon enough you too can get filthy, tech-titan rich.

You’re less likely to hear the more common story: a young entrepreneur starts a new business, accrues debt, runs out of luck, gets demoralized and then, reluctantly, takes on a regular job. What explains the frequency of these crash-and-burn stories? It seems the problem doesn’t lie in the pursuit of entrepreneurism, but rather in the age at which entrepreneurs start launching businesses.

MOST SUCCESSFUL FOUNDERS AREN’T EXACTLY YOUNG

That’s the takeaway of a recent study that found the mean age for the 1-in-1,000 fastest growing new ventures to be 45 years. This finding held true across “high-technology sectors, entrepreneurial hubs, and successful firm exits.” So, although conventional thinking tends to paint the young generation as uniquely creative innovators and (sorry in advance) Big Thinkers, it seems that older generations are more likely to possess traits that facilitate entrepreneurial success.

“We find that age indeed predicts success, and sharply, but in the opposite way that many propose,” the researchers wrote. “The highest success rates in entrepreneurship come from founders in middle age and beyond.”

The basic idea behind this age-success relationship is that people tend to accumulate skills, resources and experience with age. However, the findings did reveal some caveats:

“Overall, we see that younger founders appear strongly disadvantaged in their tendency to produce the highest-growth companies. That said, there is a hint of some interesting age thresholds and plateaus in the data. Below age 25, founders appear to do badly (or rather, do well extremely rarely), but there is a sharp increase in performance at age 25. Between ages 25 and 35, performance seems fairly flat. However, starting after age 35 we see increased success probabilities, now outpacing the 25-year-olds. Another large surge in performance comes at age 46 and is sustained toward age 60.”

TO DREAM OR NOT TO DREAM?

So, what’s the lesson for young, prospective entrepreneurs? It’s not to stop dreaming big. But maybe it’s wise to start dreaming more strategically — to broaden the definition of entrepreneurism to include more low-cost, low-risk paths, like carving out entrepreneurial opportunities within your current job. That way, you can accumulate more of the experience and skills that’ll help to fortify your entrepreneurial pursuit when the time comes.

The findings on age and success also imply that young entrepreneurs shouldn’t fall into the trap of comparing themselves to the outlier young-success stories — the Zuckerbergs, Musks and Gates’ of the world.

“We should stop lying to young people about commerce and tell the truth that business is hard,” Jeffrey A. Tucker wrote in an article for the American Institute for Economic Research.“Work is hard. Saving money is hard. Serving customers is hard. For some people, just showing up is hard. These are all learned skills. The fun comes once you master them.”

Link Original: https://bigthink.com/the-present/young-entrepreneurs/#Echobox=1638508300


This Simple Experiment Could Challenge Standard Quantum Theory

A deceptively simple experiment that involves making precise measurements of the time it takes for a particle to go from point A to point B could spark a breakthrough in quantum physics. The findings could focus attention on an alternative to standard quantum theory called Bohmian mechanics, which posits an underworld of unseen waves that guide particles from place to place.

A new study, by a team at the Ludwig Maximilian University of Munich (LMU) in Germany, makes precise predictions for such an experiment using Bohmian mechanics, a theory formulated by theoretical physicist David Bohm in the 1950s and augmented by modern-day theorists. Standard quantum theory fails in this regard, and physicists have to resort to assumptions and approximations to calculate particle transit times.

“If people knew that a theory that they love so much—standard quantum mechanics—cannot make [precise] predictions in such a simple case, that should at least make them wonder,” says theorist and LMU team member Serj Aristarhov.

It is no secret that the quantum world is weird. Consider a setup that fires electrons at a screen. You cannot predict exactly where any given electron will land to form, say, a fluorescent dot. But you can predict with precision the spatial distribution, or pattern, of dots that takes shape over time as the electrons land one by one. Some locations will have more electrons; others will have fewer. But this weirdness hides something even stranger. All else being equal, each electron will reach the detector at a slightly different time, its so-called arrival time. Just like the positions, the arrival times will have a distribution: some arrival times will be more common, and others will be less so.

But textbook quantum physics has no mechanism for precisely predicting this temporal distribution. “Normal quantum theory is only concerned with ‘where’; they ignore the ‘when,’” says team member and theorist Siddhant Das. “That’s one way to diagnose that there’s something fishy.”

There is a deep reason for this curious shortcoming. In standard quantum theory, a physical property that can be measured is called an “observable.” The position of a particle, for example, is an observable. Each and every observable is associated with a corresponding mathematical entity called an “operator.” But the standard theory has no such operator for observing time. In 1933 Austrian theoretical physicist Wolfgang Pauli showed that quantum theory could not accommodate a time operator, at least not in the standard way of thinking about it. “We conclude therefore that the introduction of a time operator … must be abandoned fundamentally,” he wrote.

MIXING CLASSICAL WITH QUANTUM

But measuring particle arrival times and or their “time of flight” is an important aspect of experimental physics. For example, such measurements are made with detectors at the Large Hadron Collider or instruments called mass spectrometers that use such information to calculate the masses and momenta of particles, ions and molecules.

Even though such calculations concern quantum systems, physicists cannot use unadulterated quantum mechanics all the way through. “You would have no way to come up with [an unambiguous] prediction,” Das says.

Instead they resort to assumptions to arrive at answers. For example, in one method, experimenters assume that once the particle leaves its source, it behaves classically, meaning it follows Newton’s equations of motion.

This results in a hybrid approach—one that is part quantum, part classical. It starts with the quantum perspective, where each particle is represented by a mathematical abstraction called a wave function. Identically prepared particles will have identical wave functions when they are released from their source. But measuring the momentum of each particle (or, for that matter, its position) at the instant of release will yield different values each time. Taken together, these values follow a distribution that is precisely predicted by the initial wave function. Starting from this ensemble of values for identically prepared particles, and assuming that a particle follows a classical trajectory once it is emitted, the result is a distribution of arrival times at the detector that depends on the initial momentum distribution.

Standard theory is also often used for another quantum mechanical method for calculating arrival times. As a particle flies toward a detector, its wave function evolves according to the Schrödinger equation, which describes a particle’s changing state over time. Consider the one-dimensional case of a detector that is a certain horizontal distance from an emission source. The Schrödinger equation determines the wave function of the particle and hence the probability of detecting that particle at that location, assuming that the particle crosses the location only once (there is, of course, no clear way to substantiate this assumption in standard quantum mechanics). Using such assumptions, physicists can calculate the probability that the particle will arrive at the detector at a given time (t) or earlier.

“From the perspective of standard quantum mechanics, it sounds perfectly fine,” Aristarhov says. “And you expect to have a nice answer from that.”

There is a hitch, however. To go from the probability that the arrival time is less than or equal to t to the probability that it is exactly equal to tinvolves calculating a quantity that physicists call the quantum flux, or quantum probability current—a measure of how the probability of finding the particle at the detector location changes with time. This works well, except that, at times, the quantum flux can be negative even though it is hard to find wave functions for which the quantity becomes appreciably negative. But nothing “prohibits this quantity from being negative,” Aristarhov says. “And this is a disaster.” A negative quantum flux leads to negative probabilities, and probabilities can never be less than zero.

Using the Schrödinger evolution to calculate the distribution of arrival times only works when the quantum flux is positive—a case that, in the real world, only definitively exists when the detector is in the “far field,” or at a considerable distance from the source, and the particle is moving freely in the absence of potentials. When experimentalists measure such far-field arrival times, both the hybrid and quantum flux approaches make similar predictions that tally well with experimental findings. But they do not make clear predictions for “near field” cases, where the detector is very close to the source.

BOHMIAN PREDICTIONS

Dissatisfied with this flawed status quo, in 2018 Das and Aristarhov, along with their then Ph.D. adviser Detlef Dürr, an expert on Bohmian mechanics at LMU who died earlier this year, and their colleagues, began working on Bohmian-based predictions of arrival times. Bohm’s theory holds that each particle is guided by its wave function. Unlike standard quantum mechanics, in which a particle is considered to have no precise position or momentum prior to a measurement—and hence no trajectory—particles in Bohmian mechanics are real and have squiggly trajectories described by precise equations of motion (albeit ones that differ from Newton’s equations of motion).

Among the researchers’ first findings was that far-field measurements would fail to distinguish between the predictions of Bohmian mechanics and those of the hybrid or quantum flux approaches. This is because, over large distances, Bohmian trajectories become straight lines, so the hybrid semi-classical approximation holds. Also, for straight far-field trajectories, the quantum flux is always positive, and its value is predicted exactly by Bohmian mechanics. “If you put a detector far enough [away], and you do Bohmian analysis, you see that it coincides with the hybrid approach and the quantum flux approach,” Aristarhov says.

The key, then, is to do near-field measurements, but those have been considered impossible. “The near-field regime is very volatile. It’s very sensitive to the initial wave function shape you have created,” Das says. Also, “if you come very close to the region of initial preparation, the particle will just be detected instantaneously. You cannot resolve [the arrival times] and see the differences between this prediction and that prediction.”

To avoid this problem, Das and Dürr proposed an experimental setup that would allow particles to be detected far away from the source while still generating unique results that could distinguish the predictions of Bohmian mechanics from those of the more standard methods.

Conceptually, the team’s proposed setup is rather simple. Imagine a waveguide—a cylindrical pathway that confines the motion of a particle (an optical fiber is such a waveguide for photons of light, for example). On one end of the waveguide, prepare a particle—ideally an electron or some particle of matter—in its lowest energy, or ground, state and trap it in a bowl-shaped electric potential well. This well is actually the composite of two adjacent potential barriers that collectively create the parabolic shape. If one of the barriers is switched off, the particle will still be blocked by the other that remains in place, but it is free to escape from the well into the waveguide.

Das pursued the painstaking task of fleshing out the experiment’s parameters, performing calculations and simulations to determine the theoretical distribution of arrival times at a detector placed far away from a source along a waveguide’s axis. After a few years of work, he had obtained clear results for two different types of initial wave functions associated with particles such as electrons. Each wave function can be characterized by something called its spin vector. Imagine an arrow associated with the wave function that can be pointing in any direction. The team looked at two cases: one in which the arrow points along the axis of the waveguide and another in which it is perpendicular to that axis.

The team showed that, when the wave function’s spin vector is aligned along the waveguide’s axis, the distribution of arrival times predicted by the quantum flux method and by Bohmian mechanics are identical. But they differ significantly from the hybrid approach.

When the spin vector is perpendicular, however, the distinctions become starker. With help from their LMU colleague Markus Nöth, the researchers showed that all the Bohmian trajectories will strike the detector at or before this cutoff time. “This was very unexpected,” Das says.

Again, the Bohmian prediction differs significantly from the predictions of the semi-classical hybrid theory, which do not exhibit such a sharp arrival-time cutoff. And crucially, in this scenario, the quantum flux is negative, meaning that calculating arrival times using Schrödinger evolution becomes impossible. The standard quantum theorists “put their hands up when [the quantum flux] becomes negative,” Das says.

EXPERIMENTALISTS ENTER THE FRAY

Quantum theorist Charis Anastopoulos of the University of Patras in Greece, an expert on arrival times, who was not involved with this work, is both impressed and circumspect. “The setup they are proposing seems plausible,” he says. And because each approach to calculating the distribution of arrival times involves a different way of thinking about quantum reality, a clear experimental finding could jolt the foundations of quantum mechanics. “It will vindicate particular ways of thinking. So in this way, it will have some impact,” Anastopoulos says. “If it [agrees with] Bohmian mechanics, which is a very distinctive prediction, this would be a great impact, of course.”

At least one experimentalist is gearing up to make the team’s proposal a reality. Before Dürr’s death, Ferdinand Schmidt-Kaler of the Johannes Gutenberg University Mainz in Germany had been in discussions with him about testing arrival times. Schmidt-Kaler is an expert on a type of ion trap in which electric fields are used to confine a single calcium ion. An array of lasers is used to cool the ion to its quantum ground state, where the momentum and position uncertainties of the ion are at their minimum. The trap is a three-dimensional bowl-shaped region created by the combination of two electric potentials; the ion sits at the bottom of this “harmonic” potential. Switching off one of the potentials creates conditions similar to what is required by the theoretical proposal: a barrier on one side and a sloping electric potential on the other side. The ion moves down that slope, accelerates and gains velocity. “You can have a detector outside the trap and measure the arrival time,” Schmidt-Kaler says. “That is what made it so attractive.”

For now, his group has done experiments in which the researchers eject the ion out of its trap and detect it outside. They showed that the time of flight is dependent on a particle’s initial wave function. The results were published in New Journal of Physics this year. Schmidt-Kaler and his colleagues have also performed not yet published tests of the ion exiting the trap only to be reflected back in by an “electric mirror” and recaptured—a process the setup achieves with 98 percent efficiency, he says. “We are underway,” Schmidt-Kaler says. “Of course, it is not tuned to optimize this measurement of the time of flight distribution, but it could be.”

That is easier said than done. The detector outside the ion trap will likely be a sheet of laser light, and the team will have to measure the ion’s interaction with the light sheet to nanosecond precision. The experimentalists will also need to switch off one half of the harmonic potential with similar temporal precision—another serious challenge. These and other pitfalls abound on the tortuous path that must be traversed between theoretical prediction and experimental realization.

Still, Schmidt-Kaler is excited about the prospects of using time-of-flight measurements to test the foundations of quantum mechanics. “This has the attraction of being completely different from other [kinds of] tests. It really is something new,” he says. “This will go through many iterations. We will see the first results, I hope, in the next year. That’s my clear expectation.”

Meanwhile Aristarhov and Das are reaching out to others, too. “We really hope that the experimentalists around the world notice our work,” Aristarhov says. “We will join forces to do the experiments.”

And a conclusion written by Dürr in a yet to be published paper features final words that could almost be an epitaph: “It should be clear by now that the chapter on time measurements in quantum physics can only be written if genuine quantum mechanical time-of-flight data become available,” he wrote. Which theory will the experimental data pick out as correct—if any? “It’s a very exciting question,” Dürr added.

Link Original:https://www.scientificamerican.com/article/this-simple-experiment-could-challenge-standard-quantum-theory/?fbclid=IwAR37ED7M5z6ez35HFlvY6SwWsHR0rIqtubvaaEOYhC1-C8gQelG1x3lDnTA


Pupil size surprisingly linked to differences in intelligence

What can you tell by looking into someone’s eyes? You can spot a glint of humor, signs of tiredness, or maybe that they don’t like something or someone. 

But outside of assessing an emotional state, a person’s eyes may also provide clues about their intelligence, suggests new research. A study carried out at the Georgia Institute of Technology shows that pupil size is «closely related» to differences in intelligence between individuals. 

The scientists found that larger pupils may be connected to higher intelligence, as demonstrated by tests that gauged reasoning skills, memory, and attention. In fact, the researchers claim that the relationship of intelligence to pupil size is so pronounced, that it came across their previous two studies as well and can be spotted just with your naked eyes, without any additional scientific instruments. You should be able to tell who scored the highest or the lowest on the cognitive tests just by looking at them, say the researchers.

The pupil-IQ link

The connection was first noticed across memory tasks, looking at pupil dilations as signs of mental effort. The studies involved more than 500 people aged 18 to 35 from the Atlanta area. The subjects’ pupil sizes were measured by eye trackers, which use a camera and a computer to capture light reflecting off the pupil and cornea. As the scientists explained in Scientific American, pupil diameters range from two to eight millimeters. To determine average pupil size, they took measurements of the pupils at rest when the participants were staring at a blank screen for a few minutes.

Another part of the experiment involved having the subjects take a series of cognitive tests that evaluated «fluid intelligence» (the ability to reason when confronted with new problems), «working memory capacity» (how well people could remember information over time), and «attention control» (the ability to keep focusing attention even while being distracted). An example of the latter involves a test that attempts to divert a person’s focus on a disappearing letter by showing a flickering asterisk on another part of the screen. If a person pays too much attention to the asterisk, they might miss the letter. 

The conclusions of the research were that having a larger baseline pupil size was related to greater fluid intelligence, having more attention control, and even greater working memory capacity, although to a smaller extent. In an email exchange with Big Think, author Jason Tsukahara pointed out, «It is important to consider that what we find is a correlation — which should not be confused with causation.»

The researchers also found that pupil size seemed to decrease with age. Older people had more constricted pupils but when the scientists standardized for age, the pupil-size-to-intelligence connection still remained.

Why are pupils linked to intelligence?

The connection between pupil size and IQ likely resides within the brain. Pupil size has been previously connected to the locus coeruleus, a part of the brain that’s responsible for synthesizing the hormone and neurotransmitter norepinephrine (noradrenaline), which mobilizes the brain and body for action. Activity in the locus coeruleus affects our perception, attention, memory, and learning processes.

As the authors explain, this region of the brain «also helps maintain a healthy organization of brain activity so that distant brain regions can work together to accomplish challenging tasks and goals.» Because it is so important, loss of function in the locus coeruleus has been linked to conditions like Alzheimer’s disease, Parkinson’s, clinical depression, and attention deficit hyperactivity disorder (ADHD).

The researchers hypothesize that people who have larger pupils while in a restful state, like staring at a blank computer screen, have «greater regulation of activity by the locus coeruleus.» This leads to better cognitive performance. More research is necessary, however, to truly understand why having larger pupils is related to higher intelligence. 

In an email to Big Think, Tsukahara shared, «If I had to speculate, I would say that it is people with greater fluid intelligence that develop larger pupils, but again at this point we only have correlational data.»

Do other scientists believe this?

As the scientists point out in the beginning of their paper, their conclusions are controversial and, so far, other researchers haven’t been able to duplicate their results. The research team addresses this criticism by explaining that other studies had methodological issues and examined only memory capacity but not fluid intelligence, which is what they measured.

Link Original: https://bigthink.com/surprising-science/pupil-size-intelligence


A unique brain signal may be the key to human intelligence

Though progress is being made, our brains remain organs of many mysteries. Among these are the exact workings of neurons, with some 86 billion of them in the human brain. Neurons are interconnected in complicated, labyrinthine networks across which they exchange information in the form of electrical signals. We know that signals exit an individual neuron through a fiber called an axon, and also that signals are received by each neuron through input fibers called dendrites.

Understanding the electrical capabilities of dendrites in particular — which, after all, may be receiving signals from countless other neurons at any given moment — is fundamental to deciphering neurons’ communication. It may surprise you to learn, though, that much of everything we assume about human neurons is based on observations made of rodent dendrites — there’s just not a lot of fresh, still-functional human brain tissue available for thorough examination.

For a new study published January 3 in the journal Science, however, scientists got a rare chance to explore some neurons from the outer layer of human brains, and they discovered startling dendrite behaviors that may be unique to humans, and may even help explain how our billions of neurons process the massive amount of information they exchange.

Electrical signals weaken with distance, and that poses a riddle to those seeking to understand the human brain: Human dendrites are known to be about twice as long as rodent dendrites, which means that a signal traversing a human dendrite could be much weaker arriving at its destination than one traveling a rodent’s much shorter dendrite. Says paper co-author biologist Matthew Larkum of Humboldt University in Berlin speaking to LiveScience, «If there was no change in the electrical properties between rodents and people, then that would mean that, in the humans, the same synaptic inputs would be quite a bit less powerful.» Chalk up another strike against the value of animal-based human research. The only way this would not be true is if the signals being exchanged in our brains are not the same as those in a rodent. This is exactly what the study’s authors found.

The researchers worked with brain tissue sliced for therapeutic reasons from the brains of tumor and epilepsy patients. Neurons were resected from the disproportionately thick layers 2 and 3 of the cerebral cortex, a feature special to humans. In these layers reside incredibly dense neuronal networks.

Without blood-borne oxygen, though, such cells only last only for about two days, so Larkum’s lab had no choice but to work around the clock during that period to get the most information from the samples. «You get the tissue very infrequently, so you’ve just got to work with what’s in front of you,» says Larkum. The team made holes in dendrites into which they could insert glass pipettes. Through these, they sent ions to stimulate the dendrites, allowing the scientists to observe their electrical behavior.

In rodents, two type of electrical spikes have been observed in dendrites: a short, one-millisecond spike with the introduction of sodium, and spikes that last 50- to 100-times longer in response to calcium.

In the human dendrites, one type of behavior was observed: super-short spikes occurring in rapid succession, one after the other. This suggests to the researchers that human neurons are «distinctly more excitable » than rodent neurons, allowing them to successfully traverse our longer dendrites.

In addition, the human neuronal spikes — though they behaved somewhat like rodent spikes prompted by the introduction of sodium — were found to be generated by calcium, essentially the opposite of rodents.

The study also reports a second major finding. Looking to better understand how the brain utilizes these spikes, the team programmed computer models based on their findings. (The brains slices they’d examined could not, of course, be put back together and switched on somehow.)

The scientists constructed virtual neuronal networks, each of whose neurons could could be stimulated at thousands of points along its dendrites, to see how each handled so many input signals. Previous, non-human, research has suggested that neurons add these inputs together, holding onto them until the number of excitatory input signals exceeds the number of inhibitory signals, at which point the neuron fires the sum of them from its axon out into the network.

However, this isn’t what Larkum’s team observed in their model. Neurons’ output was inverse to their inputs: The more excitatory signals they received, the less likely they were to fire off. Each had a seeming «sweet spot» when it came to input strength.

What the researchers believe is going on is that dendrites and neurons may be smarter than previously suspected, processing input information as it arrives. Mayank Mehta of UC Los Angeles, who’s not involved in the research, tells LiveScience, «It doesn’t look that the cell is just adding things up — it’s also throwing things away.» This could mean each neuron is assessing the value of each signal to the network and discarding «noise.» It may also be that different neurons are optimized for different signals and thus tasks.

Much in the way that octopuses distribute decision-making across a decentralized nervous system, the implication of the new research is that, at least in humans, it’s not just the neuronal network that’s smart, it’s all of the individual neurons it contains. This would constitute exactly the kind of computational super-charging one would hope to find somewhere in the amazing human brain.

Link original: https://bigthink.com/mind-brain/human-neuron-signals?rebelltitem=1#rebelltitem1


Brain changed by caffeine in utero

Photo by fotografierende on Pexels.com

New research finds caffeine consumed during pregnancy can change important brain pathways in baby

Date:February 8, 2021Source:University of Rochester Medical CenterSummary:New research finds caffeine consumed during pregnancy can change important brain pathways that could lead to behavioral problems later in life. Researchers analyzed thousands of brain scans of nine and ten-year-olds, and revealed changes in the brain structure in children who were exposed to caffeine in utero.

New research finds caffeine consumed during pregnancy can change important brain pathways that could lead to behavioral problems later in life. Researchers in the Del Monte Institute for Neuroscience at the University of Rochester Medical Center (URMC) analyzed thousands of brain scans of nine and ten-year-olds, and revealed changes in the brain structure in children who were exposed to caffeine in utero.

Leer Más

Happiness really does come for free

Photo by David Kuko on Pexels.com

People in societies where money plays a minimal role can have very high levels of happiness

Date: February 8, 2021 / Source: McGill University / Summary: Economic growth is often prescribed as a way of increasing the well-being of people in low-income countries. A new stude suggests that there may be good reason to question this assumption. The researchers found that the majority of people in societies where money plays a minimal role reported a level of happiness comparable to that found in Scandinavian countries which typically rate highest in the world.

Leer Más

What is the purpose of universities?

For centuries, universities have advanced humanity toward truth. Professor Jonathan Haidt speaks to why college campuses are suddenly heading in the opposite direction.

  • In a lecture at UCCS, NYU professor Jonathan Haidt considers the ‘telos’ or purpose of universities: To discover truth.
  • Universities that prioritize the emotional comfort of students over the pursuit of truth fail to deliver on that purpose, at a great societal cost.
  • To make that point, Haidt quotes CNN contributor Van Jones: «I don’t want you to be safe ideologically. I don’t want you to be safe emotionally. I want you to be strong—that’s different.»
Leer Más


Físicos dizem ter detectado o quinto elemento – a quintessência

Redação do Site Inovação Tecnológica – 27/11/2020Quintessência: Físicos dizem ter detectado o quinto elementoO observatório Planck rastreou a radiação cósmica de fundo, que os cientistas acreditam ser o «eco» do Big Bang. [Imagem: ESA/Planck]

Photo by Pixabay on Pexels.com

O retorno do éter

Uma dupla de físicos da Alemanha e do Japão acredita ter dado um passo importante para ressuscitar uma das teorias mais controversas da Física: o éter.

Até Einstein, o éter era a substância essencial a partir da qual todas as partículas e ondas eram medidas, e no qual elas se deslocavam. Mas a teoria da relatividade especial dispensou o éter. Como defender o éter significava contrapor-se à relatividade, o termo foi logo banido e criou-se muito preconceito em torno dele.

Não têm faltado tentativas de ressuscitá-lo, sendo que a versão mais moderna equivale ao chamado vácuo quântico, que descreve o «vazio» como uma sopa de partículas que surgem e desaparecem o tempo todo – para quase todos os efeitos, aceitar o vácuo quântico significa apenas rebatizar o éter.

Leer Más

Su-Fi people think that in our ordinary state we are asleep / hipnotized / trance. In this state of sleep / hypnosis / trance, many of us live our entire lives without being aware that something more is possible. We imagine ourselves to be fully conscious and fully developed. This illusion prevents us from seeing our situation and, especially, ourselves as we really are.

«If a man in prison was at any time to have a chance to escape, then he must first of all realize that he is in prison.»

Sanai explained: «Humanity is asleep, concerned only with what is useless, living in a wrong world. Believing that one can excel this is only habit and usage, not religion. You have an inverted knowledge and religion if you are upside down in relation to Reality. Man is wrapping his net around himself. A lion bursts his cage asunder… » Sanai of Afghanistan, The Walled Garden of Truth, written in 1131 A.D.

«This universe that you see, containing the human and the divine, is a unity; we are the limbs of a might body. Nature brought us to birth as kin, since it generated us all from the same materials and for the same purposes, endowing us with affection for one another and making us companionable. Nature establishes fairness and justice. According to nature’s dispensation, it is worse to harm than to be harmed. On the basis of nature’s command, let our hands be available to help whenever necessary. Let this verse be in your heart and in your mouth:

I am a human being, I regard nothing human as foreign to me. Let us hold things in common, as we are born for the common good. Our companionship is just like an arch, which would collapse without the stones’ mutual support to hold it up.»

Seneca, letter 95.