Universo pode ser parte de um enorme computador quântico

Estudo de físicos russos postula que nosso Universo é um objeto quântico e deve exibir características quânticas como superposição, o que levaria à existência de múltiplos universos em interação

Recentemente dois físicos da Universidade Federal do Báltico Immanuel Kant (IKBFU), na Rússia, propuseram uma visão totalmente nova do cosmos. Seu estudo combina a ideia de que estamos vivendo uma simulação e a mistura com a teoria dos “muitos mundos” para dizer que todo o nosso universo é parte de um computador ou sistema quântico imensamente grande, abrangendo “incontáveis” multiversos.

Artyam Yurov e Valerian Yurov, os pesquisadores da IKBFU por trás do estudo, postulam que tudo no universo, incluindo ele mesmo, deve ser visto como um objeto quântico. Isso significa que, para experimentar a “realidade quântica”, não precisamos olhar para partículas subatômicas ou qubits: já estamos lá.

Leer Más


Agrotóxico que reduz QI de crianças tem uso crescente no Brasil

Inseticida clorpirifós já foi banido de oito países europeus e está sob contestação em seis estados americanos

Contestado na Europa e nos EUA, o agrotóxico clorpirifós tem efeitos devastadores. Segundo especialistas, ele deixa traços nos alimentos e, no organismo humano, causa danos como distúrbios hormonais, deficiência mental irreversível nos fetos e diminuição de até 2,5 pontos de QI (quociente de inteligência) das crianças. O clorpirifós é um agrotóxico que surgiu para substituir o devastador DDT na agricultura e é usado há mais de 50 anos – mas é cada vez mais contestado pelos efeitos nocivos à saúde e ao meio ambiente.

O produto combate larvas e insetos e foi banido de oito países europeus. A sua licença para a utilização agrícola na União Europeia se aproxima do fim e o prazo, janeiro de 2020, levantou o debate sobre a pertinência de renovar a autorização. Segundo o jornal francês Le Monde, a Comissão Europeia estuda a possibilidade de não validar a permissão.

Leer Más


Fractales: qué son esos patrones matemáticos infinitos a los que se les llama “la huella digital de Dios”

¿Qué tienen en común las galaxias, las nubes, tu sistema nervioso, las cordilleras y las costas?

Todos contienen patrones interminables conocidos como fractales.

Son herramientas importantes en muchos campos, desde la investigación sobre el cambio climático y la trayectoria de meteoritos peligrosos hasta la investigación del cáncer -ayudando a identificar el crecimiento de células mutadas- y la creación de películas de dibujos animados.

Esos son unos pocos ejemplos y hay quienes creen que, debido a su naturaleza altamente compleja y misteriosa, aún no se ha descubierto todo su potencial.

Desafortunadamente, no hay una definición de fractales que sea simple y precisa.

Como tantas otras cosas en la ciencia y las matemáticas modernas, las discusiones sobre la “geometría fractal” pueden confundir rápidamente a los que no tenemos mentes matemáticas.

Y eso es una verdadera lástima, porque hay una profunda belleza y poder en la idea de los fractales.

Así que no nos demos por vencidos.

El genio que los nombró

El término lo acuñó un científico colorido y poco convencional llamado Benoit Mandelbrot, un matemático polaco nacionalizado francés y estadounidense.

Mandelbrot se saltó los primeros dos años de escuela y, como judío en la Europa devastada por la guerra, su educación se vio muy interrumpida.

En gran medida fue autodidacta o tutorizado por familiares. Nunca aprendió formalmente el alfabeto, ni siquiera la multiplicación más allá de la tabla del 5.

Pero tenía un don para ver los patrones ocultos de la naturaleza.

 

 

 

 

 

Benoit Mandelbrot tenía un don con el que revolucionó nuestra comprensión del mundo.

Podía ver reglas donde el resto de nosotros vemos la anarquía. Podía ver forma y estructura, donde el resto de nosotros solo vemos un desastre sin forma.

Y, sobre todo, podía ver que un extraño nuevo tipo de matemática apuntalaba toda la naturaleza.

Celebrando el caos

Mandelbrot se dedicó toda la vida a buscar una base matemática simple para las formas irregulares del mundo real.

Le parecía perverso que los matemáticos hubieran pasado siglos contemplando formas idealizadas como líneas rectas o círculos perfectos.

Las nubes no son esferas, las montañas no son conos, las costas no son círculos y la corteza de los árboles no es lisa, ni los rayos viajan en línea recta“, escribió Mandelbrot.

 

 

 

 

 

La forma de las nubes es complicada e irregular: el tipo de forma que los matemáticos solían evitar a favor de las regulares, como esferas, que podían domar con ecuaciones.

El caos y la irregularidad del mundo -a lo que llamaba “aspereza”- es algo para celebrar. Para él, habría sido una pena que las nubes fueran realmente esferas y las montañas, conos.

Sin embargo, no tenía una forma adecuada o sistemática de describir las formas ásperas e imperfectas que dominan el mundo real.

Así que se preguntó si había algo único que definiera todas las formas variadas de la naturaleza.

¿Compartían alguna característica matemática común las esponjosas superficies de las nubes, las ramas de los árboles y los ríos, los bordes de las costas?

Pues resulta que sí.

Parecido a sí mismo

Piensa en las nubes, montañas, costas, brócolis y helechos… sus formas tienen algo en común, algo intuitivo, accesible y estético.

Si las observas con atención, descubrirás que su complejidad sigue presente a menor escala.

Subyacente a casi todas las formas en el mundo natural hay un principio matemático conocido como autosimilitud, que describe cualquier cosa en la que la misma forma se repite una y otra vez a escalas cada vez más pequeñas.

Un buen ejemplo son las ramas de los árboles.

 

 

 

 

 

A la izquierda, la silueta de un árbol. A la derecha, la figura de Lichtenberg, también conocida como árbol de electrones o árbol de rayos. Las figuras de Lichtenberg son descargas eléctricas ramificadas que aparecen en la superficie o el interior de un material aislante… Curiosamente parecidos, ¿no?

Se bifurcan y se bifurcan nuevamente, repitiendo ese simple proceso una y otra vez a escalas cada vez más pequeñas.

El mismo principio de ramificación se aplica en la estructura de nuestros pulmones y en la forma en que los vasos sanguíneos se distribuyen por nuestros cuerpos.

Y la naturaleza puede repetir todo tipo de formas de esta manera.

Mira este brócoli romanesco. Su estructura general está compuesta por una serie de conos repetidos a escalas cada vez más pequeñas.

 

 

 

 

 

La estructura general del brócoli romanesco está compuesta por una serie de conos repetidos.

Mandelbrot se dio cuenta de que la autosimilitud era la base de un tipo completamente nuevo de geometría… es a eso a lo que le dio el nombre de fractal, y es a eso a lo que a veces se le llama “la huella digital de Dios”.

El fin es el principio

¿Qué pasaría si se pudiera representar esa propiedad de la naturaleza en las matemáticas? ¿Qué pasaría si pudieras capturar su esencia para hacer un dibujo? ¿Cómo sería ese dibujo?

La respuesta vendría del mismo Mandelbrot, quien había aceptado un trabajo en IBM a fines de la década de 1950 para obtener acceso a su increíble poder de cómputo y dar rienda suelta a su obsesión con las matemáticas de la naturaleza.

Armado con una supercomputadora de nueva generación, comenzó a investigar una ecuación muy curiosa y extrañamente simple que podía usarse para dibujar una forma muy inusual.

La siguiente ilustración es una de las imágenes matemáticas más notables jamás descubiertas.

Es el conjunto de Mandelbrot…

 

 

 

 

 

 

Este es el fractal generado por computadora más famoso: un paisaje arremolinado, plumoso y aparentemente orgánico que recuerda al mundo natural, pero es completamente virtual. Es infinitamente complejo, pero está construido a partir de una ecuación extremadamente simple que se repite sin cesar. Del mismo modo, las formas fractales naturales se construyen mediante reglas simples, en última instancia, las interacciones entre los átomos.

Cuanto más cerca examines esta imagen, más detalles verás.

Cada forma dentro del conjunto contiene un número infinito de formas más pequeñas, que contiene un número infinito de otras formas aún más pequeñas… y así, sin fin.

Una de las cosas más asombrosas sobre el conjunto de Mandelbrot es que, en teoría, si se deja solo, continuaría creando patrones infinitamente nuevos a partir de la estructura original, lo que demostraría que algo podría ampliarse para siempre.

Sin embargo, toda esta complejidad proviene de una ecuación increíblemente simple.

Y eso nos obliga a repensar la relación entre simplicidad y complejidad.

Hay algo en nuestras mentes que dice que la complejidad no surge de la simplicidad; que debe surgir de algo complicado. Pero lo que nos dicen las matemáticas en toda esta área es que reglas muy simples dan lugar naturalmente a objetos muy complejos.

Esa es la gran revelación. Es una idea asombrosa. Y parece que se aplica a todo nuestro mundo.

Algo para tener en cuenta

Piensa en las bandadas de pájaros. Cada pájaro obedece reglas muy simples. Pero el grupo en su conjunto hace cosas increíblemente complicadas, como evitar obstáculos y navegar por el planeta sin un solo líder o incluso un plan consciente.

Es imposible predecir cómo se comportará. Nunca repite exactamente lo que hace, incluso en circunstancias aparentemente idénticas.

 

 

 

 

 

Los patrones de las bandadas de pájaros son parecidos, pero no idénticos.

Cada vez que lo ejecuta, los patrones son ligeramente diferentes: similares, pero nunca idénticos.

Lo mismo ocurre con los árboles.

Sabemos que producirán un cierto tipo de patrón, pero eso no quiere decir que podamos predecir las formas exactas, pues algunas variaciones naturales, causadas por las diferentes estaciones, el viento o algún accidente ocasional, hace que sean únicos.

Eso quiere decir que las matemáticas fractales no pueden usarse para predecir los grandes eventos en los sistemas caóticos, pero pueden decirnos que tales eventos sucederán.

La matemática fractal, junto con el campo relacionado de la teoría del caos, reveló la belleza oculta del mundo, inspiró a científicos en muchas disciplinas, incluyendo cosmología, medicina, ingeniería y genética, y también a artistas y músicos.

Nos mostró que el Universo es fractal e inherentemente impredecible.

Link Original: https://www.bbc.com/mundo/noticias-50604356?ocid=socialflow_facebook&fbclid=IwAR28Fs-DCECY5DebzFTitBf7mgZv7gYeeGn362r8F1yvRhK4kY82nn6A8QQ




Quantum Teleportation Enters the Real World

 

 

 

 

 

 

Two separate teams of scientists have taken quantum teleportation from the lab into the real world. Researchers working in Calgary, Canada and Hefei, China, used existing fiber optics networks to transmit small units of information across cities via quantum entanglement — Einstein’s “spooky action at a distance.”Stepping Outside the LabAccording to quantum mechanics, some objects, like photons or electrons, can be entangled.

Leer Más


I’m A Surgeon. Here’s What Happened When I Held My Patient’s Hand And Prayed For Her.

 

 

 

 

 

 

Several years ago, my business hit rock bottom. As a young, traditionally trained surgeon, I was taught the old surgery adage: “To cut is to cure.” Following this mantra early in my practice led me into a deep, dark hole. I had operated on many patients, but several of them were unhappy, and some had suffered complications. In the small town where I practiced, the word began to spread that perhaps I wasn’t a plastic surgeon worth seeing.

Leer Más



Researchers reach milestone in quantum standardization

Researchers at the University of Waterloo have developed a method that could pave the way to establishing universal standards for measuring the performance of quantum computers.

The new method, called cycle benchmarking, allows researchers to assess the potential of scalability and to compare one quantum platform against another.

“This finding could go a long way toward establishing standards for performance and strengthen the effort to build a large-scale, practical quantum ,” said Joel Wallman, an assistant professor at Waterloo’s Faculty of Mathematics and Institute for Quantum Computing. “A consistent method for characterizing and correcting the errors in provides standardization for the way a is assessed, allowing progress in different architectures to be fairly compared.”

Leer Más