Some Scientists Believe the Universe Is Conscious

In upcoming research, scientists will attempt to show the universe has consciousness. Yes, really. No matter the outcome, we’ll soon learn more about what it means to be conscious—and which objects around us might have a mind of their own.

What will that mean for how we treat objects and the world around us? Buckle in, because things are about to get weird.

What Is Consciousness?

The basic definition of consciousness intentionally leaves a lot of questions unanswered. It’s “the normal mental condition of the waking state of humans, characterized by the experience of perceptions, thoughts, feelings, awareness of the external world, and often in humans (but not necessarily in other animals) self-awareness,” according to the Oxford Dictionary of Psychology.

Scientists simply don’t have one unified theory of what consciousness is. We also don’t know where it comes from, or what it’s made of.

However, one loophole of this knowledge gap is that we can’t exhaustively say other organisms, and even inanimate objects, don’t have consciousness. Humans relate to animals and can imagine, say, dogs and cats have some amount of consciousness because we see their facial expressions and how they appear to make decisions. But just because we don’t “relate to” rocks, the ocean, or the night sky, that isn’t the same as proving those things don’t have consciousness.

This is where a philosophical stance called panpsychism comes into play, writes All About Space’s David Crookes:

“This claims consciousness is inherent in even the tiniest pieces of matter — an idea that suggests the fundamental building blocks of reality have conscious experience. Crucially, it implies consciousness could be found throughout the universe.”

It’s also where physics enters the picture. Some scientists have posited that the thing we think of as consciousness is made of micro-scale quantum physics events and other “spooky actions at a distance,” somehow fluttering inside our brains and generating conscious thoughts.

The Free Will Conundrum

One of the leading minds in physics, 2020 Nobel laureate and black hole pioneer Roger Penrose, has written extensively about quantum mechanics as a suspected vehicle of consciousness. In 1989, he wrote a book called The Emperor’s New Mind, in which he claimed “that human consciousness is non-algorithmic and a product of quantum effects.”

Let’s quickly break down that statement. What does it mean for human consciousness to be “algorithmic”? Well, an algorithm is simply a series of predictable steps to reach an outcome, and in the study of philosophy, this idea plays a big part in questions about free will versus determinism.

Are our brains simply cranking out math-like processes that can be telescoped in advance? Or is something wild happening that allows us true free will, meaning the ability to make meaningfully different decisions that affect our lives?

Within philosophy itself, the study of free will dates back at least centuries. But the overlap with physics is much newer. And what Penrose claimed in The Emperor’s New Mind is that consciousness isn’t strictly causal because, on the tiniest level, it’s a product of unpredictable quantum phenomena that don’t conform to classical physics.

So, where does all that background information leave us? If you’re scratching your head or having some uncomfortable thoughts, you’re not alone. But these questions are essential to people who study philosophy and science, because the answers could change how we understand the entire universe around us. Whether or not humans do or don’t have free will has huge moral implications, for example. How do you punish criminals who could never have done differently?

Consciousness Is Everywhere

In physics, scientists could learn key things from a study of consciousness as a quantum effect. This is where we rejoin today’s researchers: Johannes Kleiner, mathematician and theoretical physicist at the Munich Center For Mathematical Philosophy, and Sean Tull, mathematician at the University of Oxford.

Kleiner and Tull are following Penrose’s example, in both his 1989 book and a 2014 paper where he detailed his belief that our brains’ microprocesses can be used to model things about the whole universe. The resulting theory is called integrated information theory (IIT), and it’s an abstract, “highly mathematical” form of the philosophy we’ve been reviewing.

In IIT, consciousness is everywhere, but it accumulates in places where it’s needed to help glue together different related systems. This means the human body is jam-packed with a ton of systems that must interrelate, so there’s a lot of consciousness (or phi, as the quantity is known in IIT) that can be calculated. Think about all the parts of the brain that work together to, for example, form a picture and sense memory of an apple in your mind’s eye.

The revolutionary thing in IIT isn’t related to the human brain—it’s that consciousness isn’t biological at all, but rather is simply this value, phi, that can be calculated if you know a lot about the complexity of what you’re studying.

If your brain has almost countless interrelated systems, then the entire universe must have virtually infinite ones. And if that’s where consciousness accumulates, then the universe must have a lot of phi.

Hey, we told you this was going to get weird.

“The theory consists of a very complicated algorithm that, when applied to a detailed mathematical description of a physical system, provides information about whether the system is conscious or not, and what it is conscious of,” Kleiner told All About Space. “If there is an isolated pair of particles floating around somewhere in space, they will have some rudimentary form of consciousness if they interact in the correct way.”

Kleiner and Tull are working on turning IIT into this complex mathematical algorithm—setting down the standard that can then be used to examine how conscious things operate. 

Think about the classic philosophical comment, “I think, therefore I am,” then imagine two geniuses turning that into a workable formula where you substitute in a hundred different number values and end up with your specific “I am” answer.

The next step is to actually crunch the numbers, and then to grapple with the moral implications of a hypothetically conscious universe. It’s an exciting time to be a philosopher—or a philosopher’s calculator.

Link Original: https://www.popularmechanics.com/science/a36329671/is-the-universe-conscious/?utm_source=facebook&utm_medium=social-media&utm_campaign=socialflowFBPOP&fbclid=IwAR2RtikR_vKNp0wepXtQ_QEq1o438qMPsGLEB5RV4czuo6M7lcRgWO-c1hI




Pupil size surprisingly linked to differences in intelligence

What can you tell by looking into someone’s eyes? You can spot a glint of humor, signs of tiredness, or maybe that they don’t like something or someone. 

But outside of assessing an emotional state, a person’s eyes may also provide clues about their intelligence, suggests new research. A study carried out at the Georgia Institute of Technology shows that pupil size is «closely related» to differences in intelligence between individuals. 

The scientists found that larger pupils may be connected to higher intelligence, as demonstrated by tests that gauged reasoning skills, memory, and attention. In fact, the researchers claim that the relationship of intelligence to pupil size is so pronounced, that it came across their previous two studies as well and can be spotted just with your naked eyes, without any additional scientific instruments. You should be able to tell who scored the highest or the lowest on the cognitive tests just by looking at them, say the researchers.

The pupil-IQ link

The connection was first noticed across memory tasks, looking at pupil dilations as signs of mental effort. The studies involved more than 500 people aged 18 to 35 from the Atlanta area. The subjects’ pupil sizes were measured by eye trackers, which use a camera and a computer to capture light reflecting off the pupil and cornea. As the scientists explained in Scientific American, pupil diameters range from two to eight millimeters. To determine average pupil size, they took measurements of the pupils at rest when the participants were staring at a blank screen for a few minutes.

Another part of the experiment involved having the subjects take a series of cognitive tests that evaluated «fluid intelligence» (the ability to reason when confronted with new problems), «working memory capacity» (how well people could remember information over time), and «attention control» (the ability to keep focusing attention even while being distracted). An example of the latter involves a test that attempts to divert a person’s focus on a disappearing letter by showing a flickering asterisk on another part of the screen. If a person pays too much attention to the asterisk, they might miss the letter. 

The conclusions of the research were that having a larger baseline pupil size was related to greater fluid intelligence, having more attention control, and even greater working memory capacity, although to a smaller extent. In an email exchange with Big Think, author Jason Tsukahara pointed out, «It is important to consider that what we find is a correlation — which should not be confused with causation.»

The researchers also found that pupil size seemed to decrease with age. Older people had more constricted pupils but when the scientists standardized for age, the pupil-size-to-intelligence connection still remained.

Why are pupils linked to intelligence?

The connection between pupil size and IQ likely resides within the brain. Pupil size has been previously connected to the locus coeruleus, a part of the brain that’s responsible for synthesizing the hormone and neurotransmitter norepinephrine (noradrenaline), which mobilizes the brain and body for action. Activity in the locus coeruleus affects our perception, attention, memory, and learning processes.

As the authors explain, this region of the brain «also helps maintain a healthy organization of brain activity so that distant brain regions can work together to accomplish challenging tasks and goals.» Because it is so important, loss of function in the locus coeruleus has been linked to conditions like Alzheimer’s disease, Parkinson’s, clinical depression, and attention deficit hyperactivity disorder (ADHD).

The researchers hypothesize that people who have larger pupils while in a restful state, like staring at a blank computer screen, have «greater regulation of activity by the locus coeruleus.» This leads to better cognitive performance. More research is necessary, however, to truly understand why having larger pupils is related to higher intelligence. 

In an email to Big Think, Tsukahara shared, «If I had to speculate, I would say that it is people with greater fluid intelligence that develop larger pupils, but again at this point we only have correlational data.»

Do other scientists believe this?

As the scientists point out in the beginning of their paper, their conclusions are controversial and, so far, other researchers haven’t been able to duplicate their results. The research team addresses this criticism by explaining that other studies had methodological issues and examined only memory capacity but not fluid intelligence, which is what they measured.

Link Original: https://bigthink.com/surprising-science/pupil-size-intelligence


Todos os personagens principais dos contos interativos são customizáveis!

Todos os personagens principais dos contos interativos são customizáveis! Isso quer dizer que as crianças podem escolher peças e cores das roupas👞👗, cor de pele 👩🏾‍🦰👩🏻, tipos de cabelos👧🏿🧒🏼, cor dos olhos 👁, e outros detalhes!Fizemos isso não só pela interatividade e diversão, as também porque sabemos da importância da representatividade para as crianças.Nos testes, vimos que praticamente todas as crianças montavam o personagem com características parecidas com as delas.Isso aproxima o leitor da história e do próprio personagem, fazendo com que a criança pertença àquele universo. 💞Essa interatividade ajuda até a desenvolver empatia, já que as crianças se colocam mais facilmente no lugar dos personagens. 💓A gente adora a customização! É uma característica do Truth and Tales que tem nosso coração.


A unique brain signal may be the key to human intelligence

Though progress is being made, our brains remain organs of many mysteries. Among these are the exact workings of neurons, with some 86 billion of them in the human brain. Neurons are interconnected in complicated, labyrinthine networks across which they exchange information in the form of electrical signals. We know that signals exit an individual neuron through a fiber called an axon, and also that signals are received by each neuron through input fibers called dendrites.

Understanding the electrical capabilities of dendrites in particular — which, after all, may be receiving signals from countless other neurons at any given moment — is fundamental to deciphering neurons’ communication. It may surprise you to learn, though, that much of everything we assume about human neurons is based on observations made of rodent dendrites — there’s just not a lot of fresh, still-functional human brain tissue available for thorough examination.

For a new study published January 3 in the journal Science, however, scientists got a rare chance to explore some neurons from the outer layer of human brains, and they discovered startling dendrite behaviors that may be unique to humans, and may even help explain how our billions of neurons process the massive amount of information they exchange.

Electrical signals weaken with distance, and that poses a riddle to those seeking to understand the human brain: Human dendrites are known to be about twice as long as rodent dendrites, which means that a signal traversing a human dendrite could be much weaker arriving at its destination than one traveling a rodent’s much shorter dendrite. Says paper co-author biologist Matthew Larkum of Humboldt University in Berlin speaking to LiveScience, «If there was no change in the electrical properties between rodents and people, then that would mean that, in the humans, the same synaptic inputs would be quite a bit less powerful.» Chalk up another strike against the value of animal-based human research. The only way this would not be true is if the signals being exchanged in our brains are not the same as those in a rodent. This is exactly what the study’s authors found.

The researchers worked with brain tissue sliced for therapeutic reasons from the brains of tumor and epilepsy patients. Neurons were resected from the disproportionately thick layers 2 and 3 of the cerebral cortex, a feature special to humans. In these layers reside incredibly dense neuronal networks.

Without blood-borne oxygen, though, such cells only last only for about two days, so Larkum’s lab had no choice but to work around the clock during that period to get the most information from the samples. «You get the tissue very infrequently, so you’ve just got to work with what’s in front of you,» says Larkum. The team made holes in dendrites into which they could insert glass pipettes. Through these, they sent ions to stimulate the dendrites, allowing the scientists to observe their electrical behavior.

In rodents, two type of electrical spikes have been observed in dendrites: a short, one-millisecond spike with the introduction of sodium, and spikes that last 50- to 100-times longer in response to calcium.

In the human dendrites, one type of behavior was observed: super-short spikes occurring in rapid succession, one after the other. This suggests to the researchers that human neurons are «distinctly more excitable » than rodent neurons, allowing them to successfully traverse our longer dendrites.

In addition, the human neuronal spikes — though they behaved somewhat like rodent spikes prompted by the introduction of sodium — were found to be generated by calcium, essentially the opposite of rodents.

The study also reports a second major finding. Looking to better understand how the brain utilizes these spikes, the team programmed computer models based on their findings. (The brains slices they’d examined could not, of course, be put back together and switched on somehow.)

The scientists constructed virtual neuronal networks, each of whose neurons could could be stimulated at thousands of points along its dendrites, to see how each handled so many input signals. Previous, non-human, research has suggested that neurons add these inputs together, holding onto them until the number of excitatory input signals exceeds the number of inhibitory signals, at which point the neuron fires the sum of them from its axon out into the network.

However, this isn’t what Larkum’s team observed in their model. Neurons’ output was inverse to their inputs: The more excitatory signals they received, the less likely they were to fire off. Each had a seeming «sweet spot» when it came to input strength.

What the researchers believe is going on is that dendrites and neurons may be smarter than previously suspected, processing input information as it arrives. Mayank Mehta of UC Los Angeles, who’s not involved in the research, tells LiveScience, «It doesn’t look that the cell is just adding things up — it’s also throwing things away.» This could mean each neuron is assessing the value of each signal to the network and discarding «noise.» It may also be that different neurons are optimized for different signals and thus tasks.

Much in the way that octopuses distribute decision-making across a decentralized nervous system, the implication of the new research is that, at least in humans, it’s not just the neuronal network that’s smart, it’s all of the individual neurons it contains. This would constitute exactly the kind of computational super-charging one would hope to find somewhere in the amazing human brain.

Link original: https://bigthink.com/mind-brain/human-neuron-signals?rebelltitem=1#rebelltitem1